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Abstract: The engineering demand for more realistic and accurate models involving interval
uncertainties lead to a new interval model of equilibrium equations in mechanics, which is based on
the algebraic completion of classical interval arithmetic called Kaucher arithmetic. The proposed
approach replaces straightforward a deterministic model by an interval model in terms of proper
and improper intervals, fully conforms to the equilibrium principle and provides sharper enclosure
of the unknown quantities than the best known methods based on classical interval arithmetic.
The paper presents the interval algebraic approach to equilibrium equations and demonstrates its
applications to various practical problems.
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1. Introduction

The basic principle of static (or dynamic) equilibrium under general force systems is an essential pre-
requisite for many branches of engineering, such as mechanical, civil, aeronautical, bioengineering,
robotics, and others that address the various consequences of forces, (Beer et al., 2010).

One main challenge for the models involving interval uncertainty is the overestimation of the
system response. Nowadays, the most successful approaches for overestimation reduction are those
that relate the dependency of interval quantities to the physics of the problem being considered,
(Muhanna et al., 2013). Recently, a model of a bar subjected to multiple axial external loads, where
load magnitudes are represented by intervals, is considered in (Elishakoff et al., 2015). Although the
aim at providing interval model conforming to the principle of static equilibrium is not completely
achieved by the proposed model, the paper demonstrates what are the challenges in this non-trivial
task. A similar problem in the context of robotics is discussed in the IEEE P1788 working group on
standardization of interval arithmetic, (Mazandarani, 2015). It is shown in (Elishakoff et al., 2015),
(Mazandarani, 2015) that an interval model based entirely on the classical interval arithmetic, in
its set-theoretic interpretation as proposed by Moore (1966), cannot provide a good estimation of
the unknown quantities involved in interval equilibrium equations.

The demand for more accurate models involving interval uncertainties lead to an interval model
of equilibrium equations in mechanics (Popova, 2016a), which is based on the algebraic completion of
classical interval arithmetic, called also Kaucher or generalized interval arithmetic. It is proven that
the proposed interval model always yields the narrowest interval enclosure and is in full conformance
with the physical meaning of static equilibrium. The work (Popova, 2016a) is focused on justification
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of the proposed interval model in one dimension, comparison to the approach of (Elishakoff et al.,
2015), and applications to computing resultant forces. A next paper (Popova, 2016b) further devel-
ops the interval algebraic approach to models involving interval equilibrium equations by considering
models of practical applications which reduce to systems of interval equilibrium equations where
the number of the unknowns is equal to the number of the equations. The initial interval model is
expanded by considering interval algebraic solution to the system of equilibrium equations, model
properties are revealed and the quality of the interval algebraic solution is compared to the best
interval solution enclosure obtained by classical interval arithmetic. The present paper summarizes
all achieved by now and continues the applications of the model to problems where the number of
equilibrium equations is less than the number of the involved unknown quantities.

The structure of the present paper is as follows. In the next section some basic notions and
properties of the algebraic extension (Kaucher, 1980) of classical interval arithmetic are summarized.
In Section 3 we present the new interval model, its generalization to systems of interval equilibrium
equations involving as many unknowns as the number of the equations, and a methodology how to
apply the interval algebraic approach when the number of equilibrium equations is less than the
number of the involved unknown quantities. Numerical applications developed in details in Sections
4 and 5 illustrate the proposed interval algebraic approach, its conformance to the equilibrium
principle, bring out its effectiveness and advantages over the approach based on classical interval
arithmetic. Section 5 demonstrates the hybrid interval approach on a frame model example. The
article ends by some conclusions.

2. The Algebraic Completion of IR

The set of classical compact intervals IR = {[a−, a+] | a−, a+ ∈ R, a− ≤ a+}, called also proper
intervals, is extended in (Kaucher, 1980) by the set IR := {[a−, a+] | a−, a+ ∈ R, a− ≥ a+}
of improper intervals obtaining thus the set KR = IR

⋃

IR = {[a−, a+] | a−, a+ ∈ R} of all
ordered couples of real numbers called generalized (extended or Kaucher) intervals. For a better
understanding we denote the classical intervals by bold face letters (e.g., a) and the intervals from
KR by brackets (e.g., [a]). Of course, a ∈ IR ⊂ KR, and thus [b] = a ∈ KR is a correct assignment.
The inclusion order relation between classical intervals ⊆, ≤ is generalized for [a], [b] ∈ KR by
[a] ⊆ [b] ⇐⇒ b− ≤ a− and a+ ≤ b+. Denote T := {[a] ∈ KR | [a] = [0, 0] or a−a+ < 0}. For
[a] = [a−, a+] ∈ KR and [b] ∈ KR \ T , define binary variables direction (τ) and “sign” (σ) by

τ([a]) :=

{

+ if a− ≤ a+,
− if a− > a+;

σ([a]) :=

{

+ if pro ([a])− ≥ 0,
− otherwise.

All elements of KR with positive direction are called proper intervals and the elements with negative
direction are called improper intervals. An element-to-element symmetry between proper and im-
proper intervals is expressed by the “Dual” operator. For [a] = [a−, a+] ∈ KR, Dual([a]) := [a+, a−].
For [a], [b] ∈ KR,

Dual(Dual([a])) = [a], (1)

Dual([a] ◦ [b]) = Dual([a]) ◦Dual([b]), ◦ ∈ {+,−,×, /}. (2)
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Define proper projection of a generalized interval [a] onto IR by

pro([a]) :=

{

[a] if τ([a]) = +,
Dual([a]) if τ([a]) = −.

The conventional interval arithmetic and lattice operations, as well as other interval functions are
isomorphically extended onto the whole set KR, (Kaucher, 1980). Thus,

[a] + [b] = [a− + b−, a+ + b+] for [a], [b] ∈ KR,

[a]× [b] =























[a−σ([b]b−σ([a]), aσ([b]bσ([a])] if [a], [b] ∈ KR \ T
[aσ([a]τ([b])b−σ([a]), aσ([a]τ([b]bσ([a])] if [a] ∈ KR \ T , [b] ∈ T
[a−σ([b]bσ([b])τ([a]), aσ([b])bσ([b])τ([a])] if [a] ∈ T , [b] ∈ KR \ T
[ min{a−b+, a+b−},max{a−b−, a+b+}] if [a], [b] ∈ T , τ([a]) = τ([b])
0 if [a], [b] ∈ T , τ([a]) 6= τ([b]),

wherein ++ = −− = +, +− = −+ = −. Interval subtraction and division can be expressed as
composite operations, [a]− [b] = [a]+(−1)[b] and [a]/[b] = [a]×(1/[b]), where 1/[b] = [1/b+, 1/b−] if
[b] ∈ KR \ T . The restrictions of the arithmetic operations to proper intervals produce the familiar
operations in the conventional interval space.

The generalized interval arithmetic structure possesses group properties with respect to the
operations addition and multiplication. For [a] ∈ KR, [b] ∈ KR \ T ,

[a]−Dual([a]) = 0, [b]/Dual([b]) = 1. (3)

The complete set of conditionally distributive relations for multiplication and addition of generalized
intervals can be found in (Popova, 1998), (Popova, 2001). Here we present only one that will be
used. For [a], [b], [s] = ([a] + [b]) ∈ KR \ T , [c] ∈ KR

([a] + [b])[c]σ([s]) = [a]σ([a]) + [b]σ([b]), (4)

wherein [a]+ = [a], [a]− = Dual([a]). Addition operation in KR is commutative and associative;
associativity does not hold true in (interval) floating point arithmetic. Lattice operations are closed
with respect to the inclusion relation; handling of norm and metric are very similar to norm and
metric in linear spaces, (Kaucher, 1980). Some other properties and applications of generalized
interval arithmetic can be found in (Kaucher, 1980), (Markov et al., 1996), (Popova, 1998), (Popova,
2001), (Popova and Ullrich, 1996), (Shary, 2002) and the references given therein.

For a ∈ IR \ T , define Abs (a) = {a if 0 ≤ a;−a otherwise }. Relative diameter of a ∈ IR is
defined as a+− a− if 0 ∈ a and (a+− a−)/min{|a−|, |a+|} otherwise. For a ⊆ b, the percentage by
which b overestimates a is defined by

100(1− ω(a))/ω(b), ω(a) := a+ − a−.
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3. Interval Model of Equilibrium Equations

In this section the algebraic approach to equilibrium equations in mechanics is derived by consid-
ering two-dimensional problems involving several forces acting on a particle. The same approach
with obvious modifications is applicable to three-dimensional problems and problems whose models
involve other vector physical quantities possessing magnitude and direction such as velocities,
accelerations, or momenta. Such problems will be illustrated in the next section. In the text of this
paper forces (and other vector quantities) are denoted by underlining the letter used to represent
it. This is necessary in order to distinguish vectors from the proper intervals, which are denoted by
bold-face letters, and from the real-valued scalars. The magnitude of a vector will be denoted by
the corresponding italic-face letter.

In the deterministic case of two- dimensional problems involving several forces, the determination
of their resultant R is best carried out by first resolving each force into rectangular components.
Choosing a rectangular coordinate system (Oxy), with unit vectors i, j, any force vector F can be
resolved into rectangular components F x = Fxi, and F y = Fyj, so that F = Fxi+ Fyj. The scalar
component Fx is positive when the vector component F x has the same direction as the unit vector i
(i.e., the same direction as the positive x axis) and is negative when F x has the opposite direction. A
similar conclusion may be drawn regarding the sign of the scalar component Fy. Denoting by F the
magnitude of the force F and by θ the angle between F and the axis x, measured counterclockwise
from the positive axis, we may express the scalar components of F as follows: Fx = F cos(θ) and
Fy = F sin(θ), cf. any textbook in statics, e.g., (Beer et al., 2010). When more than one force act
on a particle (or a rigid body), it is important to determine the resultant force, i.e., the single
force R which has the same effect on the particle as the given forces. The resultant force R can be
determined by:

1. choosing a rectangular coordinate system;

2. resolving the given forces into their rectangular components;

3. each scalar component Rx, Ry of the resultant R of several forces F i acting on a particle is
obtained by adding algebraically the corresponding scalar components of the given forces. That
is, Rx =

∑

i Fx,i, Ry =
∑

i Fy,i, which gives R = Rxi+Ryj.

Basing on the above, the one dimensional interval algebraic model for computing the resultant
force (and reaction), developed in (Popova, 2016a), can be applied to two- and three-dimensional
problems involving vector physical quantities.

Theorem 1. (Popova, 2016a) Consider a bar subjected to a finite number of loads p
1
, . . . , p

k
that

may be applied in opposite directions and have uncertain magnitude p1 ∈ p1, . . . , pk ∈ pk, pi ≥ 0,
i = 1, . . . , k. Assume that a coordinate system (Ox) is chosen. Then,

(i) for every j, 1 ≤ j ≤ k, we have [Nj ] =
∑j

i=1[pi], wherein

[pi] =

{

pi if the direction of p
i
is in the positive x axis

−Dual(pi) if the direction of p
i
is opposite to the positive x axis ,

and [r] = −Dual([Nk]) = −Dual(
∑k

i=1[pi]).
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(ii) The interpretation of [Nj ] ∈ KR, 1 ≤ j ≤ k, and similarly of [r], is as follows.

• If [Nj ] ∈ T , then N j may have positive or negative direction and its magnitude varies in
pro([Nj ]).

• If [Nj ] ∈ KR \ T , the magnitude of N j varies in Abs( pro ([Nj])), while the direction of
N j coincides with the sign of [Nj ] (if [Nj ] ≥ 0 the direction of N j is the positive x axis,
otherwise it is opposite to the positive x axis).

Strong proof that Theorem 1 provides sharpest estimation of the resultant force and its reaction is
given in (Popova, 2016a) along with a detailed discussion and examples.

Now we consider the interval algebraic model of equilibrium equations from a more general
perspective. Assume that there is a deterministic model described by some equilibrium equation(s)
that involve uncertain parameters varying within given proper intervals. Clearly, the unknowns in
this model will be also uncertain and we search for proper intervals that are the sharpest interval
estimations of these unknowns and that conform to the physics of the problem (statics or dynamic
equilibrium). Conformance to static (dynamic) equilibrium means that the intervals found for
the unknowns when replaced in the equation(s) and all operations are performed results in true
equality(ies).

Definition 1. (Ratschek and Sauer, 1982) Interval algebraic solution to a (system of) interval
equation(s) is an interval (interval vector) which substituted in the equation(s) and performing
all interval operations in exact arithmetic1 results in valid equality(ies).

Interval algebraic solutions do not exist in general in classical interval arithmetic (Ratschek and
Sauer, 1982). Generalized interval arithmetic on proper and improper intervals (KR,+,×,⊆) is
the natural arithmetic for finding algebraic solutions to interval equations since it is obtained from
the arithmetic for classical intervals (IR,+,−,×, /,⊆) via an algebraic completion. This is another
justification of the proposed interval algebraic approach. Therefore, we embed the initial problem
formulation in the interval space (KR,+×,⊆), find an algebraic solution (if exists) and interpret the
obtained generalized intervals back in the initial interval space IR. This is a three steps procedure
summarized below.

1. The representation convention for a model involving interval forces (and/or other physical
quantities considered as vectors and possessing magnitude and direction) is:

− a scalar force component Fx (Fy, Fz) involving any kind of uncertainty is represented by
proper interval Fx (Fy, Fz) if the force component F x (F y, F z) has the same direction as
the positive x (y, z) coordinate axis;

− a scalar force component Fx (Fy, Fz) involving any kind of uncertainty is represented by
the improper interval Dual(Fx) (Dual(Fy), Dual(Fz)) if the force component F x (F y, F z)
has opposite direction to the corresponding positive x (y, z) coordinate axis.

1 no round-off errors

REC 2016 - E. D. Popova

245



E. D. Popova

2. Computing. Find the algebraic solution for the unknown(s) in (KR,+,×,⊆). Conditions
for existence of algebraic solution of interval linear equations are published in (Popova, 1998),
(Shary, 2002). Numerical methods finding the algebraic solution to an interval linear system
are discussed in (Markov et al., 1996), (Shary, 2002). For small systems, the approach based on
equivalent algebraic transformations is transparent and will be used in this paper.

3. Interpretation of the obtained generalized intervals in the initial space IR is done according
to the physics of the unknowns. If it is a force component, then Theorem 1 ii) is applied. In
general the interpretation projects the generalized interval solution on IR.

Since computing a resultant R of several forces F i can be represented as a solution of the
equilibrium equation

∑

i F i−R = 0, Theorem 1 is a special case of the above more general interval
algebraic approach.

If the deterministic model involves more unknowns than the number of equilibrium equations,
other relations are obtained from the information contained in the statement of the problem. In this
case the following hybrid approach should be applied. Let the number of the equilibrium equations
be k and the number of the unknown quantities be n, n > k. From the statement of the problem
we find n− k additional relations involving (some of) the unknowns.

a. If the n − k additional relations involve n − k of the n unknowns, by methods of classical
interval analysis find interval estimations of these n− k unknowns. Then replace the obtained
interval estimations in the interval model of the equilibrium equations and find the algebraic
solution with respect to the remaining k unknowns.

b. Let n − k additional relations involve n − k + q of the unknowns. We consider q of the k
equilibrium equations together with the n − k additional relations in a way that the system
involves n− k + q unknowns. Then the process continues as in a. above.

This approach ensures that the unknown uncertain quantities are estimated in a way that the
equilibrium equations are satisfied to a highest extent that corresponds to the initial uncertainties.
Next two sections illustrate the proposed interval algebraic approach.

4. Numerical Applications

Here we consider models of practical applications which illustrate the application of interval alge-
braic approach to equilibrium equations and its properties. In order to avoid many technical details
that will hamper the comprehension, no more than two dimensional problems are considered. The

numerical results presented in this section are obtained by the Mathematicar package directed.m
(Popova and Ullrich, 1996). JInterval library (Nadezhin and Zhilin, 2014) can be used for this
purpose, too.

Example 1. Three horizontal forces are applied, as shown in Figure 1, to a vertical cast iron arm.
Assume that the distances shown in Figure 1 are measured with 1% uncertainty. Determine the
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Figure 1. Horizontal forces applied to a vertical cast iron arm.

resultant of the forces, which are measured with 5% uncertainty, and the distance from the ground
to its line of action when F2 = 700N, F3 = 150N, and a) F1 = 300N, b) F1 = 550N, c) F1 = 1200N.

With a standard coordinate system, applying the representation convention, for the resultant
force R we have

[R] = F1 −Dual(F2) + F3.

The computation results in2

[R] =







[−237.5001,−262.4999] if a)
[− 2.27× 10−13, 2.27× 10−13] if b)
[617.5000, 682.5001] if c).

According to the interpretation convention the resultant force has magnitude R = Abs(pro([R]))
and its direction is determined by the sign of [R]. That is, in case a) the magnitude varies in
[237.5001, 262.4999]N, the direction is opposite to the direction of F 1; in case b) the tiny fluctuations
around zero are due to round-off errors and therefore the forces are in equilibrium (R = 0N); in case
c) the magnitude varies in [617.5000, 682.5001]N and the direction of the resultant force coincides
with the direction of F 1 .

For the moment M (and positive direction pointing the positive y coordinate axis) the repre-
sentation convention gives

[M ] = −Dual(F1d1) + F2d2 −Dual(F3d3),

wherein d1 ∈ [0.6∓ 6× 10−3], d2 ∈ [0.4∓ 4× 10−3], d3 ∈ [0.2∓ 2× 10−3]. The computation results
in

[M ] =







[65.8349, 74.2351] if a)
[− 75.2340,−84.8400] if b)
[− 442.0351,−498.4349] if c).

According to the interpretation convention the moment M has the following magnitude M and
direction. In case a) the magnitude is [65.8349, 74.2351]N.m and the direction points to the positive
y axis; in case b) the magnitude is [75.2340, 84.8400]N.m and direction pointing opposite to the
positive y axis; in case c) M = [442.0351, 498.4349]N.m and the direction points opposite to the
positive y axis.

2 All computed numerical intervals are outwardly rounded to the intervals presented in the paper.
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Then, the distance is d = M/R which gives da ∈ [0.2508, 0.3126]m in case a); db = ∞ in case
b); and dc ∈ [0.6476, 0.8072]m in case c).

Next example demonstrates the interval algebraic approach applied to systems of equilibrium
equations where the number of the unknowns is equal to the number of the equations.

Example 2. (Popova, 2016b) A [100± 1] kg crate is suspended from a pulley that can roll freely
on the support cable ACB and is pulled at a constant speed by cable CD, as shown in Figure 2. If
α = 30◦, β = 10◦ and the angles are measured with 1% uncertainty, determine the tension

(a) in the support cable ACB,
(b) in the traction cable CD.

a) b)

Figure 2. a) A crate suspended from a pulley can roll freely on the support cable ACB and is pulled at a constant
speed by cable CD; b) Free-body diagram.

The chosen coordinate system is presented on the free-body diagram in Figure 2. The determin-
istic equilibrium equations of force x and y components are

FACB cos(10◦)− FACB cos(30◦)− FCD cos(30◦) = 0, (5)

FACB sin(10◦) + FACB sin(30◦) + FCD sin(30◦)− 100× 9.80665 = 0. (6)

The representation convention gives the interval equilibrium equations

[FACB] cos([β])−Dual(FACB cos([α]))−Dual(FCD cos([α])) = 0, (7)

[FACB] sin([β]) + [FACB] sin([α]) + [FCD] sin([α])−Dual([99, 100]× 9.80665) = 0, (8)

wherein [α] = [29, 31]◦, [β] = [9, 11]◦. We search for proper intervals FACB, FCD, that satisfy
Eqs. (7)–(8). First, we check the validity of the distributive relations for the first two additive
terms in Eqs.(7) and (8). Since

[s1] = cos([β])−Dual(cos([α])) ∈ [0.121107, 0.116479] > 0,

[s2] = sin([β]) + sin([α]) ∈ [0.667387, 0.679895] > 0,

by Eq.(4), the system (Eqs. (7)–(8)) is equivalent to the system

[FACB][s1]−Dual(FCD cos([α])) = 0,

[FACB][s2] + [FCD] sin([α])−Dual([99, 100]× 9.80665) = 0.
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Remark 1. It is important that we check the distributive relations for every expression where we
want to take a common interval variable out of brackets. For example, due to Eq. (4), and because
cos([α]) − Dual(cos([β])) < 0, the expression [FACB] cos([α]) − Dual([FACB] cos([β])) is equivalent
to

Dual([FACB]) (cos([α])−Dual(cos([β]))) .

We add [FCD] cos([α]) to the two sides of Eq. (7) and by Eq. (3) obtain the equivalent equation

[FACB][s1] = [FCD] cos([α]).

Dividing both sides of the last equation by Dual(cos([α])), and due to Eq. (3), we obtain

[FCD] = [FACB][s1]/Dual(cos([α])). (9)

We substitute the expression for [FCD] in Eq. (8). Since

[s3] = [s2] + sin([α])[s1]/Dual(cos([α])) ∈ [5.25337, 5.57483] > 0,

due to the distributive relation, Eq. (8) is equivalent to

[FACB][s3]−Dual([99, 100]× 9.80665) = 0,

which is equivalent to

[FACB] = [99, 100]× 9.80665/Dual([s3]) ∈ [1317.51, 1324.97]. (10)

Substituting Eq. (10) in Eq. (9), we obtain the second component of the algebraic solution to
interval system (Eqs. (7)–(8))

[FCD] ∈ [184.806, 177.669].

We are looking for proper algebraic solution to the interval equilibrium system. This restriction
may not always be satisfied, as in the present example with respect to [FCD]. Nevertheless, we
interpret [FACB] and [FCD] in IR as the corresponding proper intervals, namely,

FACB = Abs(pro([FACB])) ∈ [1317.51, 1324.97] N,

FCD = Abs(pro([FCD])) ∈ [177.669, 184.806] N.

Since [FCD] is an improper interval, substituting FACB and FCD into left sides of the Eqs. (7) and (8),
we obtain much wider intervals involving zero, namely, [6.16307,−6.20045] and [−3.53667, 3.60141],
respectively. The relative diameters of FACB and FCD are 0.00565 and 0.0402, respectively.

Remark 2. Proper algebraic solution to the system (Eqs. (7)–(8)) can be obtained if, for example,
we squeeze the interval [α] to the interval [30− 0.1, 30 + 0.1].

Now, we compare the solution FACB, FCD, obtained by the discussed algebraic approach, to the
solution obtained by classical interval arithmetic. The Eqs. (5) and (6) are rearranged to

FACB (cos(10◦)− cos(30◦))− FCD cos(30◦) = 0,

FACB (sin(10◦) + sin(30◦)) + FCD sin(30◦) = 100× 9.80665
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and the corresponding interval linear system that has to be solved is
(

cos([β])− cos([α]), cos([α])
sin([β]) + sin([α]), sin([α])

)(

FACB

FCD

)

=

(

0
[99, 100]× 9.80665

)

.

Since some interval parameters, e.g., [α], [β], appear in more than one element of the matrix and/or
the right-hand side vector, this is a parametric interval linear system. In classical interval arithmetic
we search for a minimal outer interval estimation of the so-called united parametric solution set to
the system. For A(p)x = b(p), p ∈ p, the united parametric solution set is

Σ = {x ∈ R
n | (∃p ∈ p)(A(p)x = b(p))}.

It can be proven, by method discussed in (Popova, 2006), that the united parametric solution
set of the above system depends linearly on the interval parameters involved there. Therefore,
one can find the minimal interval vector containing the united parametric solution set by finding
the interval hull of the set of solutions to the point linear systems of equations obtained for the
parameters taking values at all combinations of the corresponding interval end-points, the so-called
combinatorial approach. Applying this approach, we find

F̃ACB = [1293.33, 1349.74], F̃CD = [175.743, 186.773],

whose relative diameters are respectively 0.04361 and 0.06276. Replacing F̃ACB, F̃CD in the left-
hand sides of the generalized interval equilibrium equations (Eqs. (7) and (8)), we obtain much
wider intervals involving zero [4.89652,−5.02244], [−20.6303, 21.4392]. There is no inclusion relation
between FACB, FCD and F̃ACB, F̃CD. Nevertheless, judging from the value of the relative diameters
and the extent to which the interval equilibrium equations are satisfied, we conclude that the interval
algebraic approach applied to the equilibrium equations provides sharper interval estimations than
the traditional approach based on classical interval arithmetic even in the present case when the
algebraic solution to the interval equilibrium equations is not a proper interval vector.

Remark 3. In some deterministic models, e.g., when determine the forces in the members of a
truss, in order to write the equilibrium equations one has to choose the direction of each of the
unknown forces, cf. (Beer et al., 2010, Chapter 6). It cannot be determined until the solution is
completed whether the guess was correct. To do that, the value found for each of the unknowns is
considered: a positive sign means that the selected direction was correct; a negative sign means that
the direction is opposite to the assumed direction. This convention is transparently applicable to
the corresponding interval algebraic model which delivers the correct sign together with the interval
magnitude.

5. Impact on Models of Structures

Example 3. After (Kulpa et al., 1998) consider a simple planar frame with three types of support
and an external load distributed uniformly along the beam as shown in Figure 3 a).
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Figure 3. Planar frame (a) and its fundamental system of internal parameters (b), after (Kulpa et al., 1998).

Assuming small displacements and linear elastic material law, and using the method of forces,
the frame is described in (Kulpa et al., 1998) by the following set of equilibrium equations for forces
and bending moments, see Figure 3 (b).

Rx
1 +Rx

3 = 0, (11)

Ry
1 +Ry

3 +Ry
4 − ql24 = 0, (12)

−M1 +Ry
4(l12 + l24) +Ry

3l12 +Rx
3 l23 − ql24(l12 +

1

2
l24) = 0, (13)

−Ry
1l12 −M1 +M21 = 0, (14)

Ry
4l24 −

1

2
ql224 −M24 = 0. (15)

The equilibrium equations involve more unknowns than the number of the equations. Then, the
three canonical equations linking bending moments with material properties (Young modulus E
and momentum of inertia J of the beam cross-section) of the beams are given by







l12
3E12J12

l12
6E12J12

0
l12

6E12J12

l12
3E12J12

+ l23
3E23J23

−l23
3E23J23

0 −l23
3E23J23

l24
3E12J12

+ l23
3E23J23











M1

M21

M24



 =





0
0

−ql324
24E24J24



 . (16)

The parameters of this frame will be given as dimensionless numbers. It is assumed that all the
beams have the same Young modulus E and momentum of inertia J of the beam cross-sections are
related by the formula J12 = J23 = 1.5J24. The lengths of the beams and the load are considered to
be uncertain with the following nominal values l12 = l24 = 1, l23 = 0.75, and q = 10. Substituting
these into the Eqs. (11)–(16) for the frame and making appropriate simplifications, a parametric
linear system described by the following relations is obtained

1

2
a11 = a12 = a21 = a65 = −a74 = l12

a22 = 2l12 + 2l23, a33 = 3l24 + 2l23, a66 = l12 + l24, a23 = a32 = −2l23, a68 = l23, a86 = l24

a47 = a48 = a54 = a55 = a56 = −a61 = −a71 = a72 = −a83 = 1
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b = (0, 0, −3

8
q l324, 0, q l24, q l24(l12 +

1

2
l24), 0,

1

2
q l224)

⊤.

It is assumed that there is no prestressing of the structure due to inexact dimensions of the beams.
For that, the uncertainties are considered either as errors of measurements of the elements of the
already existing structure, or else assume the structure will be assembled from inexact elements,
but in a way that does not lead to prestressing (e.g., by slightly moving appropriate supports when
necessary).

Usually, interval estimations for the unknown reactions and moments are found by bounding the
united parametric solution set of the last system. In (Popova, 2006) it is proven that the united
parametric solution set of the system (Eqs. (11)–(16)) depends linearly on the interval parameters.
In (Popova, 2005, Table 8, column 2) the sharpest interval enclosing the solution set is reported for
the parameters

l12 ∈ [0.995, 1.005], l24 ∈ [0.995, 1.005], l23 ∈ [0.74625, 0.75375], q ∈ [9.95, 10.05]. (17)

The obtained enclosures are

Table I. Solution for moments and reactions of the planar frame system with
0.5% uncertain parameters after (Popova, 2005).

M1 M21 M24 R
x

1

[.24479, .25530] [-.51059, -.48958] [-1.0171, -.98309] [-.68421, -.64953]

R
y

1 R
y

3 R
y

4 R
x

3

[-0.76973, -0.73072] [6.6698, 6.8309] [3.9600, 4.0401] [0.64953, 0.68421]

However, Ry
1 + R

y
3 + R

y
4 − ql24 ∈ [−0.24, 0.24] and the equilibrium equation (Eq. (12)) is not

satisfied.
In (Popova, 2005, Table 10, column 2) the sharpest intervals enclosing the solution set is reported

for the the planar frame system with 1% uncertain lengths and 15 % uncertain load. In this case, the
obtained interval estimations are such that Ry

1 +R
y
3 +R

y
4 − ql24 ∈ [3.47, 3.48] and the equilibrium

equation (Eq. (12)) is not satisfied, too.
In order to obtain more realistic interval estimations that satisfy the equilibrium equations

(Eqs. (11)–(15)), we will apply the proposed interval algebraic approach. First, we find the exact
interval hull of the united parametric solution set of the system (Eq. (16)) for the parameters
(Eq. (17)) as shown in Table II.

Then, we replace the obtained intervals for M1, M21 and M24 in the proposed interval model
of the equilibrium equations (Eqs. (11)–(15)) and find the algebraic solution for R

y
1,3,4, R

x
1,3, as

follows. From Eq. (14)

[Ry
1] = (−M1 +M21)/Dual(l12) = −3M1/Dual(l12) ∈ [−0.76055,−0.73954].

From Eq. (15)
[Ry

4] = (M24 + ql224/2)/Dual(l24) ∈ [3.9279, 4.07192].
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Table II. Solution for moments of the system
(Eq. (16)) with 0.5% uncertain parameters.

M1 M21 M24

[.2452, .2548] [-.5096, -.4905] [-1.0171, -.98309]

From Eq. (12)
[Ry

3] = ql24 − [Ry
1]−Dual([Ry

4]) ∈ [6.7118, 6.7889].

If the computations are done in exact (rational) arithmetic, so that there are no round-off errors,
we will have

Dual([Ry
1]) + [Ry

3] + [Ry
4]−Dual(ql24) = [0, 0].

From Eq. (13)

[Rx
3 ] = (ql24(l12+ l24/2)+M1−Dual([Ry

4](l12+ l24))−Dual([Ry
3]l12))/Dual(l23) ∈ [.70557, .62824].

And from Eq. (11)
[Rx

1 ] = −Dual([Rx
3 ]) ∈ [−.70557,−.62824].

[Rx
3 ] is improper interval, so it should be interpreted as the corresponding proper one.

Denote by R̃
y
1,3,4, R̃x

1,3 the sharpest enclosures obtained by classical interval approach and
presented in Table I. Comparing the estimations of the reactions, got by the interval equilibrium
model, to the reaction estimations R̃y

1,3,4, R̃
x
1,3 we obtain

R̃
y
1overdetermines Ry

1 by 46.2%

R̃
y
3overdetermines Ry

3 by 52.2%

R
y
4overdetermines R̃y

4 by 44.3%

Rx
1,3overdetermine R̃x

1,3 by 55.2%.

Note that the last two lines show that the classical interval estimates underdetermine the variation
in reaction magnitude. This is especially dangerous.

Remark 4. Interval forces in the interval equilibrium model are like connected vessels — expand-
ing some interval estimations shrinks the estimation of others, so that the equilibrium equations
are always satisfied. This property is particularly important because not always we can obtain the
sharpest interval estimations of the unknowns involved in the additional relations. To illustrate this
property we take the values of M1,21,24 from Table I and round them outwardly to the second place
after the decimal point as follows

M1 ∈ [24/100, 26/100], M21 ∈ [−52/100,−48/100], M24 ∈ [−102/100,−98/100]. (18)

These intervals overestimate the intervals presented in Table II by 52.5, 52.5, 93.5%, respectively.
Now, we repeat the above computations in the interval model of equilibrium equations and obtain
slightly different intervals for Ry

1,3,4, R
x
1,3 which also satisfy the equilibrium equations.
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Remark 5. Expanding the uncertainty cannot be unlimited. We illustrate this by the following
example. Assume that in the input of interval estimates (Eq. (18)) we have a typing bug so that
M24 ∈ [−102/100,−50/100]. Then the computations in the interval model of equilibrium equations
results in [Ry

3] = [144/199,−16/597], [Rx
1 ] = [−144/199, 16/597], both involving zero. The latter

means that we cannot determine the direction of both reactions. Also the first equilibrium equation
is not satisfied, Rx

1 + Rx
3 ≈ [−0.75, 0.75]. Thus, if the interval model of equilibrium equations

results in interval containing zero for some reaction magnitude, this might be due to wrong model
or overestimation of some uncertain quantities.

Remark 6. The algebraic interval approach to equilibrium equations should be applied to all
interval models (parametric interval systems of equations) involving equilibrium equations, for ex-
ample to systems for both primary and derived variables (Rao et al., 2011). Keeping the equilibrium
equations involving the same number of unknowns out of the parametric system that is solved by
classical interval methods reduces the number of both equations and interval parameters in the
latter, which additionally helps reducing the overestimation of the unknowns in the latter system.

6. Conclusion

The proposed interval algebraic model of equilibrium equations in mechanics contributes to the
development of more realistic and accurate interval models that conform to the problem physics.
The most attractive in the interval algebraic approach is its straightforward and transparent appli-
cation to the deterministic model. By a simple representation convention one can easily transform
a deterministic formulation into a unique interval arithmetic formulation in the interval space
(KR,+,×,⊆). Then in the same rich algebraic space one finds sharp algebraic solutions for the
unknown quantities and interpret them in the original physical setting of the problem.

The proposed new interval model is demonstrated on various examples of practical problems
whose models involve equilibrium equations and interval uncertainties. Along with guaranteed
quantification of all sources of uncertainties, the new algebraic approach provides also sharper
enclosure of the unknown quantities than the best known methods based on classical interval
arithmetic. Contrary to classical interval approach, the algebraic one provides satisfaction of the
equilibrium equations even for large parameter uncertainties.

The proposed interval model of equilibrium equations allows accounting for the dependencies
between interval parameters from the very beginning of modeling process, as well as efficient
reduction of the interval overestimation that may arise in more complicated models.
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